隨著機械工業的不斷發展,對金屬材料的要求也越來越高,如何在材料以及熱處理工藝既定的前提下盡量提高金屬工件的機械性能及使用壽命,這成為很多熱處理行業前沿人士思考并探索的問題。
深冷處理是將金屬在-100℃下進行處理,使柔軟的殘余奧氏體幾乎全部轉變成高強度的馬氏體,并能減少表面疏松,降低表面粗糙度的一個熱處理后工序,當這個工序完成后,不僅僅是表面,幾乎可以使整個金屬的強度增加,耐磨性增加,韌性增加,其他性能指標改善,從而使得模具和刀具翻新數次后仍然具有高的耐磨性和高的強度,壽命成倍增加。而未進行深冷處理的刀剪產品,翻新后壽命會顯著降低。深冷處理不僅應用于刀剪產品,而且能應用于制作刀剪產品的模具上,同樣可以使模具壽命顯著提高
1、 消除殘余奧氏體:
一般淬火回火后的殘余奧氏體在8~20%左右,殘余奧氏體會隨著時間的推移進一步馬氏體化,在馬氏體轉變過程中,會引起體積的膨脹,從而影響到尺寸精度,并且使晶格內部應力增加,嚴重影響到金屬性能,深冷處理一般能使殘余奧氏體降低到2%以下,消除殘余奧氏體的影響。如果有較多的殘余奧氏體,強度降低,在周期應力作用下,容易疲勞脫落,造成附近碳化物顆粒懸空,很快與基體脫落,產生剝落坑,形成較大粗糙度的表面。
2、填補內部空隙,使金屬表面積即耐磨面增大:
深冷處理使得馬氏體填補內部空隙,使得金屬表面更加密實,使耐磨面積增加,晶格更小,合金成分析出均勻,淬火層深度增加,而且不僅僅是表面,使翻新次數增加,壽命提高。
3、析出碳化物顆粒:
深冷處理不僅減少殘余馬氏體,還可以析出碳化物顆粒,而且可細化馬氏體孿晶,由于深冷時馬氏體的收縮迫使晶格減少,驅使碳原子的析出,而且由于低溫下碳原子擴散困難,因而形成的碳化物尺寸達納米級,并附著在馬氏體孿晶帶上,增加硬度和韌性。深冷處理后金屬的磨損形態與未深冷的金屬顯著不同,說明它們的磨損機理不同。深冷處理可以使絕大部分殘余奧氏體馬氏體化,并在馬氏體內析出高彌散度的碳化物顆粒,伴隨著基體組織的細微化,這種改變無法用傳統的金屬學,相變理論來解釋,也不是以原子擴散形式來進行的,一般 -150℃~-180℃下,原子已經失去了擴散能力,只能以物理學能量觀點來解釋,其轉變機理目前尚未研究清楚。因此有待人們進一步探討。
4、 減少殘余應力;
5、 使金屬基體更加穩定;
6、 使金屬材料的強度、韌性增加;
7、 使金屬硬度提高約HRC1~2;
8、 紅硬性顯著增加;